3.205 \(\int \frac{\sin ^2(c+d x)}{a+b \sec (c+d x)} \, dx\)

Optimal. Leaf size=100 \[ \frac{x \left (a^2-2 b^2\right )}{2 a^3}+\frac{\sin (c+d x) (2 b-a \cos (c+d x))}{2 a^2 d}-\frac{2 b \sqrt{a-b} \sqrt{a+b} \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^3 d} \]

[Out]

((a^2 - 2*b^2)*x)/(2*a^3) - (2*Sqrt[a - b]*b*Sqrt[a + b]*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/
(a^3*d) + ((2*b - a*Cos[c + d*x])*Sin[c + d*x])/(2*a^2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.207073, antiderivative size = 100, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {3872, 2865, 2735, 2659, 208} \[ \frac{x \left (a^2-2 b^2\right )}{2 a^3}+\frac{\sin (c+d x) (2 b-a \cos (c+d x))}{2 a^2 d}-\frac{2 b \sqrt{a-b} \sqrt{a+b} \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^3 d} \]

Antiderivative was successfully verified.

[In]

Int[Sin[c + d*x]^2/(a + b*Sec[c + d*x]),x]

[Out]

((a^2 - 2*b^2)*x)/(2*a^3) - (2*Sqrt[a - b]*b*Sqrt[a + b]*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/
(a^3*d) + ((2*b - a*Cos[c + d*x])*Sin[c + d*x])/(2*a^2*d)

Rule 3872

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[((g*C
os[e + f*x])^p*(b + a*Sin[e + f*x])^m)/Sin[e + f*x]^m, x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rule 2865

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[(g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*(b*c*(m + p + 1) -
 a*d*p + b*d*(m + p)*Sin[e + f*x]))/(b^2*f*(m + p)*(m + p + 1)), x] + Dist[(g^2*(p - 1))/(b^2*(m + p)*(m + p +
 1)), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^m*Simp[b*(a*d*m + b*c*(m + p + 1)) + (a*b*c*(m + p + 1
) - d*(a^2*p - b^2*(m + p)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2,
0] && GtQ[p, 1] && NeQ[m + p, 0] && NeQ[m + p + 1, 0] && IntegerQ[2*m]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sin ^2(c+d x)}{a+b \sec (c+d x)} \, dx &=-\int \frac{\cos (c+d x) \sin ^2(c+d x)}{-b-a \cos (c+d x)} \, dx\\ &=\frac{(2 b-a \cos (c+d x)) \sin (c+d x)}{2 a^2 d}-\frac{\int \frac{-a b+\left (a^2-2 b^2\right ) \cos (c+d x)}{-b-a \cos (c+d x)} \, dx}{2 a^2}\\ &=\frac{\left (a^2-2 b^2\right ) x}{2 a^3}+\frac{(2 b-a \cos (c+d x)) \sin (c+d x)}{2 a^2 d}+\frac{\left (b \left (a^2-b^2\right )\right ) \int \frac{1}{-b-a \cos (c+d x)} \, dx}{a^3}\\ &=\frac{\left (a^2-2 b^2\right ) x}{2 a^3}+\frac{(2 b-a \cos (c+d x)) \sin (c+d x)}{2 a^2 d}+\frac{\left (2 b \left (a^2-b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-a-b+(a-b) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{a^3 d}\\ &=\frac{\left (a^2-2 b^2\right ) x}{2 a^3}-\frac{2 \sqrt{a-b} b \sqrt{a+b} \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^3 d}+\frac{(2 b-a \cos (c+d x)) \sin (c+d x)}{2 a^2 d}\\ \end{align*}

Mathematica [A]  time = 0.301632, size = 96, normalized size = 0.96 \[ \frac{2 \left (a^2-2 b^2\right ) (c+d x)+8 b \sqrt{a^2-b^2} \tanh ^{-1}\left (\frac{(b-a) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )+a^2 (-\sin (2 (c+d x)))+4 a b \sin (c+d x)}{4 a^3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[c + d*x]^2/(a + b*Sec[c + d*x]),x]

[Out]

(2*(a^2 - 2*b^2)*(c + d*x) + 8*b*Sqrt[a^2 - b^2]*ArcTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]] + 4*a*b*
Sin[c + d*x] - a^2*Sin[2*(c + d*x)])/(4*a^3*d)

________________________________________________________________________________________

Maple [B]  time = 0.058, size = 269, normalized size = 2.7 \begin{align*}{\frac{1}{ad} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3} \left ( 1+ \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) ^{-2}}+2\,{\frac{ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}b}{d{a}^{2} \left ( 1+ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) ^{2}}}+2\,{\frac{\tan \left ( 1/2\,dx+c/2 \right ) b}{d{a}^{2} \left ( 1+ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) ^{2}}}-{\frac{1}{ad}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \left ( 1+ \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) ^{-2}}-2\,{\frac{\arctan \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ){b}^{2}}{d{a}^{3}}}+{\frac{1}{ad}\arctan \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) }-2\,{\frac{b}{ad\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}{\it Artanh} \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) }+2\,{\frac{{b}^{3}}{d{a}^{3}\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}{\it Artanh} \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(d*x+c)^2/(a+b*sec(d*x+c)),x)

[Out]

1/d/a/(1+tan(1/2*d*x+1/2*c)^2)^2*tan(1/2*d*x+1/2*c)^3+2/d/a^2/(1+tan(1/2*d*x+1/2*c)^2)^2*tan(1/2*d*x+1/2*c)^3*
b+2/d/a^2/(1+tan(1/2*d*x+1/2*c)^2)^2*tan(1/2*d*x+1/2*c)*b-1/d/a/(1+tan(1/2*d*x+1/2*c)^2)^2*tan(1/2*d*x+1/2*c)-
2/d/a^3*arctan(tan(1/2*d*x+1/2*c))*b^2+1/d/a*arctan(tan(1/2*d*x+1/2*c))-2/d*b/a/((a+b)*(a-b))^(1/2)*arctanh((a
-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))+2/d*b^3/a^3/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/(
(a+b)*(a-b))^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^2/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.27683, size = 599, normalized size = 5.99 \begin{align*} \left [\frac{{\left (a^{2} - 2 \, b^{2}\right )} d x + \sqrt{a^{2} - b^{2}} b \log \left (\frac{2 \, a b \cos \left (d x + c\right ) -{\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt{a^{2} - b^{2}}{\left (b \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) + 2 \, a^{2} - b^{2}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + b^{2}}\right ) -{\left (a^{2} \cos \left (d x + c\right ) - 2 \, a b\right )} \sin \left (d x + c\right )}{2 \, a^{3} d}, \frac{{\left (a^{2} - 2 \, b^{2}\right )} d x - 2 \, \sqrt{-a^{2} + b^{2}} b \arctan \left (-\frac{\sqrt{-a^{2} + b^{2}}{\left (b \cos \left (d x + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \sin \left (d x + c\right )}\right ) -{\left (a^{2} \cos \left (d x + c\right ) - 2 \, a b\right )} \sin \left (d x + c\right )}{2 \, a^{3} d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^2/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

[1/2*((a^2 - 2*b^2)*d*x + sqrt(a^2 - b^2)*b*log((2*a*b*cos(d*x + c) - (a^2 - 2*b^2)*cos(d*x + c)^2 - 2*sqrt(a^
2 - b^2)*(b*cos(d*x + c) + a)*sin(d*x + c) + 2*a^2 - b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + b^2)) - (
a^2*cos(d*x + c) - 2*a*b)*sin(d*x + c))/(a^3*d), 1/2*((a^2 - 2*b^2)*d*x - 2*sqrt(-a^2 + b^2)*b*arctan(-sqrt(-a
^2 + b^2)*(b*cos(d*x + c) + a)/((a^2 - b^2)*sin(d*x + c))) - (a^2*cos(d*x + c) - 2*a*b)*sin(d*x + c))/(a^3*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin ^{2}{\left (c + d x \right )}}{a + b \sec{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)**2/(a+b*sec(d*x+c)),x)

[Out]

Integral(sin(c + d*x)**2/(a + b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [B]  time = 1.33578, size = 250, normalized size = 2.5 \begin{align*} \frac{\frac{{\left (a^{2} - 2 \, b^{2}\right )}{\left (d x + c\right )}}{a^{3}} - \frac{4 \,{\left (a^{2} b - b^{3}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{-a^{2} + b^{2}}}\right )\right )}}{\sqrt{-a^{2} + b^{2}} a^{3}} + \frac{2 \,{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 2 \, b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 2 \, b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right )}^{2} a^{2}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^2/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

1/2*((a^2 - 2*b^2)*(d*x + c)/a^3 - 4*(a^2*b - b^3)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(
-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(-a^2 + b^2)))/(sqrt(-a^2 + b^2)*a^3) + 2*(a*tan(1/2*d*
x + 1/2*c)^3 + 2*b*tan(1/2*d*x + 1/2*c)^3 - a*tan(1/2*d*x + 1/2*c) + 2*b*tan(1/2*d*x + 1/2*c))/((tan(1/2*d*x +
 1/2*c)^2 + 1)^2*a^2))/d